Submillimeter-wave Applications and Instrumentation

Thomas Crowe

President & CEO Virginia Diodes Inc. Charlottesville, VA, USA

Visiting Research Professor University of Virginia Charlottesville, VA, USA

Remi Tuijtelaars

bsw TestSystems & Consulting by Boxmeer, NL

Outline

- Introduction
- A variety of THz applications
- The base for THz instrumentation
 - Frequency multipliers
 - Mixers
 - waveguide
- THz instrumentation
 - Source Extenders
 - Spectrum Analyzer Extenders
 - Extenders for Vector Network Analyzers
- Conclusions

Who is bsw?

- system integrator for RF, microwave and millimeterwave measurement solutions for characterization of on-wafer, coaxial and waveguide devices and systems for customers in semiconductor and telecommunication industry and public and academic research institutes.
- supplier of a variety of coaxial and waveguide components, typically used in the R&D lab.
- based in NL and DE, active in Benelux,
 German speaking countries and Scandinavia.

What Makes THz Interesting??

1GHz=30cm, 100GHz=3mm, 1THz=300um, 100THz=3um optical starts at ~0.7um

Change in 'intuition': electronics vs. optics and in-between

Not only electronic applications, also physics, materials, etc.

Outline

- Introduction
- A variety of THz applications
- The base for THz instrumentation
 - Frequency multipliers
 - Mixers
 - waveguide
- THz instrumentation
 - Source Extenders
 - Spectrum Analyzer Extenders
 - Extenders for Vector Network Analyzers
- Conclusions

Quest for more bandwidth

- Bandwidth as a percentage of the carrier freq
- (mis-)use atmospheric absorption spectrum

Radar

Car radar

Radio astronomy

- Use an array
- At RF, μw and mmWave

Source: SRON

A radio image of the central region of the Milky Way galaxy. The arrow indicates a supernova remnant which is the location of a newly discovered transient, bursting I ow-frequency radio.

Source: wikipedia

Explore human tissue

- Too low energy to 'hurt' human tissue
- Enough energy to penetrate for visualisation

Source: Terasense, Inc.

Design meta materials

- Measure material properties
- Create materials with 'unnatural' properties

And much, much more ...

- ESR/EPR and NMR
- Molecular spectroscopy
- Plasma Diagnostics
- Weather Monitoring
- Security imaging and sensors
- Industrial process monitoring and control

Nafradi et al (EPFL)

Outline

- Introduction
- A variety of THz applications
- The base for THz instrumentation
 - Frequency multipliers
 - Mixers
 - waveguide
- THz instrumentation
 - Source Extenders
 - Spectrum Analyzer Extenders
 - Extenders for Vector Network Analyzers
- Conclusions

mmWave signal generation

- Frequency multiplier:
 - Use nonlinear devices, create harmonics and filter nth component
- AMC: Amplifier Multiplier Chain

Schottky Diode

Ohmic Contact

- Metal-semiconductor junction
 - Majority carrier device
 - Cutoff frequencies well into the THz
 - Room temperature operation
 - Improves with cooling
- Fairly simple model
 - quasi-static I-V and C-V equations $I_d = I_{SAT_{\mathbb{C}}} e^{\frac{\Re V_j I_d R_S}{V_0}}$

$$\boldsymbol{I}_{d} = \boldsymbol{I}_{SAT} \overset{\text{@}}{\overset{\text{@}}{C}} \boldsymbol{e}^{\overset{\text{@}}{\overset{\text{@}}{C}} \overset{V_{j} - I_{d}R_{S}}{\overset{\text{"}}{\overset{\text{"}}{O}}}} - 1 \overset{\text{"}}{\overset{\text{:}}{\overset{\text{:}}{\overset{\text{:}}{O}}}} \\ \overset{\text{:}}{\overset{\text{:}}{\overset{\text{:}}{\overset{\text{:}}{\overset{\text{:}}{O}}}}{\overset{\text{:}}{\overset{\text{:}}{\overset{\text{:}}{O}}}} = 0$$

Anode

n++ GaAs

- Well-developed fabrication technology
 - Air-bridge used to reduce capacitance

Au Finger

Circuit/System considerations

- Low phase noise of driving generator
 - Increases with 20*LOG(N)

Use commercially available and proven

µW/RF microwave circuits!

- Optimized mmWave circuits
 - Broadband, Tunerless,
 High efficiency
- Balanced circuits
- Multiple diodes for increased power handling

Harmonic mixer

- (Sub-)harmonic Mixer
 - RF mixes with N*LO
- Tunerless broadband mixer design
- VDI has mixers from WR-15 up to WR-0.4 (2-2.8THz), typically full band

WR-0.65SHM (1.1-1.7 THz)

More pictures

A sub-quarter-micron whiskered diode for 2.5 THz.

An Integrated GaAs on quartz frequency mixer for 600 GHz with anti-parallel Schottky diodes

Virginia Diodes, Inc.

A planar varactor diode array for a 200 GHz doubler

Flip-chip planar diode

Rectangular Waveguide

- TE10 Mode preferred
- No propagation for $\lambda_c > 2a$
 - High pass filter
- >TE10 modes starts at 2*f_C
- Best behaved between $1.25*f_C$ and $1.9*f_C$

Top View (TE₁₀)

_ Electric field lines _ Magnetic field lines

Waveguide Sizes and Frequency Ranges

VDI Designation	Internal Dimensions (µm)		Cut-off frequency	Suggested min.	Suggested max.	Calculated Loss (dB/cm) for Au *		Alternate	
	Width	Height	(ĠHz)	frequency (GHz)	frequency (GHz)	At min. frequency	At max. frequency	Designations	
WR-15	3759	1880	39.9	50	75	0.022	0.015	٧	-
WR-12	3099	1549	48.4	60	90	0.030	0.020	Е	-
WR-10	2540	1270	59.01	75	110	0.039	0.027	W	-
WR-8.0	2032	1016	73.77	90	140	0.059	0.038	F	WR-8
WR-6.5	1651	825.5	90.79	110	170	0.081	0.052	D	WR-6
WR-5.1	1295	647.5	115.75	140	220	0.12	0.074	G	WR-5
WR-4.3	1092	546	137.27	170	260	0.14	0.1	-	WR-4
WR-3.4	864	432	173.49	220	330	0.2	0.14	-	WR-3
WM-710 (WR-2.8)	710	355	211.12	260	400	0.28	0.18	-	•
WM-570 (WR-2.2)	570	285	262.98	330	500	0.37	0.25	-	-
WM-470 (WR-1.9)	470	235	318.93	400	600	0.5	0.34	-	•
WM-380 (WR-1.5)	380	190	394.46	500	750	0.67	0.47	-	-
WM-310 (WR-1.2)	310	155	483.54	600	900	0.95	0.64	-	•
WM-250 (WR-1.0)	250	125	599.58	750	1100	1.3	0.88	-	•
WM-200 (WR-0.8)	200	100	749.48	900	1400	2	1.2	-	•
WM-164 (WR-0.65)	164	82	914	1100	1700	2.6	1.7	-	-
WM-130 (WR-0.51)	130	65	1153	1400	2200	3.7	2.3	-	•
WM-106 (WR-0.43)	106	53	1414.1	1700	2600	5.1	3.2	-	-
WM-86 (WR-0.34)	86	43	1743	2200	3300	6.3	4.3	-	-

^{*} Waveguide loss calculated according to IEEE P1785.1

Outline

- Introduction
- A variety of THz applications
- The base for THz instrumentation
 - Frequency multipliers
 - Mixers
 - waveguide
- THz instrumentation
 - Source Extenders
 - Spectrum Analyzer Extenders
 - Extenders for Vector Network Analyzers
- Conclusions

Signal Generator Extenders, SGX

- Basically an AMC
- Low/high input frequency
- Full WG band operation
- High output power
- AM modulation and Power Control capability
 - Voltage controlled
 - May also be controlled by drive synthesizer ** KEYSI

Optimized Multipliers

180 mW @ 224 GHz

~3 uW @ 2.7 THz

WR9.0 THz Modular Kit: 170-1100 GHz

•WR-9: 82-125 GHz •Pout ~ 25 mW

•WR-4.3: 170-250 GHz •Pout ~ 3 mW

•WR-2.8: 265-375 GHz •Pout ~ 0.7 mW

•WR-2.2: 340-500 GHz •Pout ~ 0.18 mW

•WR-1.5: 510-750 GHz •Pout ~ 30 uW

•WR-1.0: 795-1100 GHz •Pout ~ 4 uW

- Series of cascaded multipliers and detectors
 - Tunerless, instantaneous sweeping over > 40% bandwidth
 - Approx. 9-14GHz input
- Rapidly interchangeable components
 - Turn-key operation
- Built-in AM and Power Control capability

Spectrum Analyzer Extenders, SAX

- Basically a Mixer+AMC (for the LO)
- Full WG band operation
- High sensitivity/low DANL
- IF bandwidth to 40GHz
- Swept or block down convertor

Spectrum Analyzer Extenders, SAX

Multiple vendors supported

Keysight PXA

Rohde & Schwarz FSU

- Image removal option advisable
- DANL = A measure of the minimum detectable signal with 1 Hz bandwidth

BAND WR -	Typical DANL (dB / Hz)
8.0	-153
5.1	-151
3.4	-147
2.2	-144
1.5	-133
1.0	-125

VNA Extenders, VNAX

One-Port

- Basically adds to the VNA
 - External couplers,
 - Source extender (AMC),
 - Downconvertor (MixAMC).
- Different configurations

VNA Extenders, VNAX

- VDI Extenders from WR-10 thru WM-250
 - State-of-the-art Dynamic range, due to high stimulus power and low noise MixAMC

- Excellent amplitude and phase stability
- Fully calibrated measurements

WM-250 (WR1.0) VNA Extender

Dynamic Range: 60 dB typical at 10Hz BW

Dynamic Range: 40 dB minimum at 10Hz BW

Magnitude Stability: ±1 dB

Phase Stability: ±15°

Test Port Power: -35 dBm

 Test Port Input Limit (dBm, saturation/damage): -20/13

-20/13

Directivity: 30 dB

Typical Dimensions: 8 x 5 x 3 inches

Atmospheric Losses Affect Measurements

- Due to air in system waveguide after couplers.
- General accuracy issue!

DSW TestSystems & Consulting

Outline

- Introduction
- A variety of THz applications
- The base for THz instrumentation
 - Frequency multipliers
 - Mixers
 - waveguide
- THz instrumentation
 - Source Extenders
 - Spectrum Analyzer Extenders
 - Extenders for Vector Network Analyzers
- Conclusions

Conclusions

- Increasing interest in THz frequencies for various reasons
- This requires instrumentation to develop the THz application equipment
- Some fundamentals from THz instrumentation are presented:
 - Use of multipliers and (harmonic) mixers
 - Use of Schottky diode technology
- An overview of VDI full band instrumentation is given:
 - Source extenders, SGX
 - Spectrum Analyzer extenders, SAX
 - Vector Network Analyzer Extenders, VNAX
- Source power and frequency continues to increase.
- Higher levels of integration are allowing the development of more compact systems.